
Fourth Edition

Fortran
for Scientists and Engineers

Stephen J. Chapman

	

Fortran for Scientists
and Engineers

Fourth Edition

	

Fortran for Scientists
and Engineers

Fourth Edition

Stephen J. Chapman
BAE Systems Australia

FORTRAN FOR SCIENTISTS AND ENGINEERS, FOURTH EDITION

Published by McGraw-Hill Education, 2 Penn Plaza, New York, NY 10121. Copyright © 2018 by McGraw-
Hill Education. All rights reserved. Printed in the United States of America. Previous edition © 2008 and
2004. No part of this publication may be reproduced or distributed in any form or by any means, or stored in
a database or retrieval system, without the prior written consent of McGraw-Hill Education, including, but
not limited to, in any network or other electronic storage or transmission, or broadcast for distance learning.

Some ancillaries, including electronic and print components, may not be available to customers outside
the United States.

This book is printed on acid-free paper.

1  2  3  4  5  6  7  8  9  LCR  21  20  19  18  17

ISBN 978–0–07–338589–1
MHID 0–07–338589–1

Chief Product Officer, SVP Products &
  Markets:  G. Scott Virkler
Vice President, General Manager, Products &
  Markets:  Marty Lange
Vice President, Content Design & Delivery:
  Betsy Whalen
Managing Director:  Thomas Timp
Brand Manager:  Raghothaman Srinivasan/
  Thomas M. Scaife, Ph.D
Director, Product Development:  Rose Koos
Product Developer:  Tina Bower
Marketing Manager:  Shannon O’Donnell

Director, Content Design & Delivery:
  Linda Avenarius
Program Manager:  Lora Neyens
Content Project Managers:  Jane Mohr and
  Sandra Schnee
Buyer:  Jennifer Pickel
Design:  Studio Montage, St. Louis, MO
Content Licensing Specialist:  DeAnna Dausener
Cover Image:  hh5800/Getty Images
Compositor:  Aptara®, Inc.
Printer:  LSC Communications

All credits appearing on page or at the end of the book are considered to be an extension of the copyright page.

Library of Congress Cataloging-in-Publication Data
Chapman, Stephen J., author.
Fortran for scientists and engineers / Stephen J. Chapman, BAE Systems
 Australia.
Fourth edition. | New York, NY : McGraw-Hill, a business unit of
 The McGraw-Hill Companies, Inc., [2017] | Includes index.
LCCN 2016052439 | ISBN 9780073385891 (alk. paper) | ISBN
 0073385891 (alk. paper)
LCSH: FORTRAN (Computer program language) | Science—Data
 processing. | Engineering—Data processing.
LCC QA76.73.F25 C425 2017 | DDC 005.13/3—dc23 LC record available at
  https://lccn.loc.gov/2016052439

The Internet addresses listed in the text were accurate at the time of publication. The inclusion of a
website does not indicate an endorsement by the authors or McGraw-Hill Education, and McGraw-Hill
Education does not guarantee the accuracy of the information presented at these sites.

mheducation.com/highered

	

This book is dedicated to my son Avi, who is the
only one of our eight children actually

making a living writing software!

	

STEPHEN J. CHAPMAN received a B.S. in Electrical Engineering from Louisiana
State University (1975), an M.S.E. in Electrical Engineering from the University of
Central Florida (1979), and pursued further graduate studies at Rice University.

From 1975 to 1980, he served as an officer in the U.S. Navy, assigned to teach
Electrical Engineering at the U.S. Naval Nuclear Power School in Orlando, Florida.
From 1980 to 1982, he was affiliated with the University of Houston, where he ran the
power systems program in the College of Technology.

From 1982 to 1988 and from 1991 to 1995, he served as a Member of the Technical
Staff of the Massachusetts Institute of Technology’s Lincoln Laboratory, both at the
main facility in Lexington, Massachusetts, and at the field site on Kwajalein Atoll in
the Republic of the Marshall Islands. While there, he did research in radar signal
processing systems. He ultimately became the leader of four large operational range
instrumentation radars at the Kwajalein field site (TRADEX, ALTAIR, ALCOR, and
MMW).

From 1988 to 1991, Mr. Chapman was a research engineer in Shell Development
Company in Houston, Texas, where he did seismic signal processing research. He was
also affiliated with the University of Houston, where he continued to teach on a part-
time basis.

Mr. Chapman is currently Manager of Systems Modeling and Operational
Analysis for BAE Systems Australia, in Melbourne, Australia. He is the leader of a
team that has developed a model of how naval ships defend themselves against antiship
missile attacks. This model contains more than 400,000 lines of MATLAB code
written over more than a decade, so he has extensive practical experience applying
MATLAB to real-world problems.

Mr. Chapman is a Senior Member of the Institute of Electrical and Electronic
Engineers (and several of its component societies). He is also a member of the Associ-
ation for Computing Machinery and the Institution of Engineers (Australia).

A B O U T T H E A U T H O R

	

T A B L E O F C O N T E N T S

		 Preface	 xix

	1	 Introduction to Computers and The Fortran Language	 1
	 1.1	 The Computer	 2

1.1.1. The CPU  /  1.1.2. Memory  /  1.1.3. Input and
Output Devices

	 1.2	 Data Representation in a Computer	 4
1.2.1. The Binary Number System  /  1.2.2. Octal and
Hexadecimal Representations of Binary Numbers  / 
1.2.3. Types of Data Stored in Memory

	 1.3	 Computer Languages	 12
	 1.4	 The History of the Fortran Language	 13
	 1.5	 The Evolution of Fortran	 16
	 1.6	 Summary	 19

1.6.1. Exercises

	2	 Basic Elements of Fortran	 22
	 2.1	 Introduction	 22
	 2.2	 The Fortran Character Set	 23
	 2.3	 The Structure of a Fortran Statement	 23
	 2.4	 The Structure of a Fortran Program	 24

2.4.1. The Declaration Section  /  2.4.2. The Execution Section  / 
2.4.3. The Termination Section  /  2.4.4. Program Style  / 
2.4.5. Compiling, Linking, and Executing the Fortran Program

	 2.5	 Constants and Variables	 28
2.5.1. Integer Constants and Variables  /  2.5.2. Real Constants
and Variables  /  2.5.3. Character Constants and Variables  / 
2.5.4. Default and Explicit Variable Typing  /  2.5.5. Keeping
Constants Consistent in a Program

	 2.6	 Assignment Statements and Arithmetic Calculations	 36
2.6.1. Integer Arithmetic  /  2.6.2. Real Arithmetic  / 
2.6.3. Hierarchy of Operations  /  2.6.4. Mixed-Mode
Arithmetic  /  2.6.5. Mixed-Mode Arithmetic and Exponentiation

x	 Table of Contents

	 2.7	 Intrinsic Functions	 47
	 2.8	 List-Directed Input and Output Statements	 49
	 2.9	 Initialization of Variables	 55
	2.10	 The IMPLICIT NONE Statement	 57
	2.11	 Program Examples	 58
	2.12	 Debugging Fortran Programs	 66
	2.13	 Summary	 68

2.13.1. Summary of Good Programming Practice  / 
2.13.2. Summary of Fortran Statements  /  2.13.3. Exercises

	3	 Program Design and Branching Structures	 81
	 3.1	 Introduction to Top-Down Design Techniques	 82
	 3.2	 Use of Pseudocode and Flowcharts	 86
	 3.3	 Logical Constants, Variables, and Operators	 89

3.3.1. Logical Constants and Variables  /  3.3.2. Assignment
Statements and Logical Calculations  /  3.3.3. Relational
Operators  /  3.3.4. Combinational Logic Operators  / 
3.3.5. Logical Values in Input and Output Statements  / 
3.3.6. The Significance of Logical Variables and Expressions

	 3.4	 Control Constructs: Branches	 94
3.4.1. The Block IF Construct  /  3.4.2. The ELSE and ELSE IF
Clauses  /  3.4.3. Examples Using Block IF Constructs  / 
3.4.4. Named Block IF Constructs  /  3.4.5. Notes Concerning
the Use of Block IF Constructs  /  3.4.6. The Logical IF
Statement  /  3.4.7. The SELECT CASE Construct

	 3.5	 More on Debugging Fortran Programs	 118
	 3.6	 Summary	 119

3.6.1. Summary of Good Programming Practice  / 
3.6.2. Summary of Fortran Statements and Constructs  / 
3.6.3. Exercises

	4	 Loops and Character Manipulation	 126
	 4.1	 Control Constructs: Loops	 126

4.1.1 The While Loop  /  4.1.2 The DO WHILE Loop  / 
4.1.3 The Iterative or Counting Loop  /  4.1.4 The CYCLE and
EXIT Statements  /  4.1.5 Named Loops  /  4.1.6 Nesting Loops
and Block IF Constructs

	 4.2	 Character Assignments and Character Manipulations	 154
4.2.1 Character Assignments  /  4.2.2 Substring Specifications  / 
4.2.3 The Concatenation (//) Operator  /  4.2.4 Relational
Operators with Character Data  /  4.2.5 Character
Intrinsic Functions

	 4.3	 Debugging Fortran Loops	 168

	

Table of Contents	 xi�

	 4.4	 Summary	 169
4.4.1 Summary of Good Programming Practice  / 
4.4.2 Summary of Fortran Statements and Constructs  / 
4.4.3 Exercises

	5	 Basic I/O Concepts	 180
	 5.1	 Formats and Formatted WRITE Statements	 180
	 5.2	 Output Devices	 182

5.2.1 Control Characters in Printer Output

	 5.3	 Format Descriptors	 184
5.3.1 Integer Output—The I Descriptor  /  5.3.2 Real Output—
The F Descriptor  /  5.3.3 Real Output—The E Descriptor  / 
5.3.4 True Scientific Notation—The ES Descriptor  / 
5.3.5 Logical Output—The L Descriptor  /  5.3.6 Character
Output—The A Descriptor  /  5.3.7 Horizontal Positioning—
The X and T Descriptor  /  5.3.8 Repeating Groups of Format
Descriptors  /  5.3.9 Changing Output Lines—The Slash (/)
Descriptor  /  5.3.10 How Formats are Used During WRITEs

	 5.4	 Formatted READ Statements	 205
5.4.1 Integer Input—The I Descriptor  /  5.4.2 Real Input—The F
Descriptor  /  5.4.3 Logical Input—The L Descriptor  / 
5.4.4 Character Input—The A Descriptor  /  5.4.5 Horizontal
Positioning—The X and T Descriptors  /  5.4.6 Vertical
Positioning—The Slash (/) Descriptor  /  5.4.7 How Formats
are Used During READs

	 5.5	 An Introduction to Files and File Processing	 211
5.5.1 The OPEN Statement  /  5.5.2 The CLOSE Statement  / 
5.5.3 READs and WRITEs to Disk Files  /  5.5.4 The IOSTAT= and
IOMSG= Clauses in the READ Statement  /  5.5.5 File Positioning

	 5.6	 Summary	 232
5.6.1 Summary of Good Programming Practice  /  5.6.2 Summary
of Fortran Statements and Structures  /  5.6.3 Exercises

	6	 Introduction to Arrays	 245
	 6.1	 Declaring Arrays	 246
	 6.2	 Using Array Elements in Fortran Statements	 247

6.2.1 Array Elements are Just Ordinary Variables  / 
6.2.2 Initialization of Array Elements  /  6.2.3 Changing the
Subscript Range of an Array  /  6.2.4 Out-of-Bounds Array
Subscripts  /  6.2.5 The Use of Named Constants with
Array Declarations

	 6.3	 Using Whole Arrays and Array Subsets in Fortran Statements	 261
6.3.1 Whole Array Operations  /  6.3.2 Array Subsets

	 6.4	 Input and Output	 265
6.4.1 Input and Output of Array Elements  /  6.4.2 The Implied DO Loop  / 
6.4.3 Input and Output of Whole Arrays and Array Sections

	 6.5	 Example Problems	 271
	 6.6	 When Should You Use an Array?	 287
	 6.7	 Summary	 289

6.7.1 Summary of Good Programming Practice  / 
6.7.2 Summary of Fortran Statements and Constructs  /  6.7.3 Exercises

	7	 Introduction to Procedures	 297
	 7.1	 Subroutines	 299

7.1.1 Example Problem—Sorting  /  7.1.2 The INTENT
Attribute  /  7.1.3 Variable Passing in Fortran: The Pass-By-
Reference Scheme  /  7.1.4 Passing Arrays to Subroutines  / 
7.1.5 Passing Character Variables to Subroutines  / 
7.1.6 Error Handling in Subroutines  /  7.1.7 Examples

	 7.2	 Sharing Data Using Modules	 320
	 7.3	 Module Procedures	 328

7.3.1 Using Modules to Create Explicit Interfaces

	 7.4	 Fortran Functions	 331
7.4.1 Unintended Side Effects in Functions  /  7.4.2 Using
Functions with Deliberate Side Effects

	 7.5	 Passing Procedures as Arguments to Other Procedures	 339
7.5.1 Passing User-Defined Functions as Arguments  / 
7.5.2 Passing Subroutines as Arguments

	 7.6	 Summary	 344
7.6.1 Summary of Good Programming Practice  / 
7.6.2 Summary of Fortran Statements and Structures  /  7.6.3 Exercises

	8	 Additional Features of Arrays	 360
	 8.1	 2D or Rank 2 Arrays	 360

8.1.1 Declaring Rank 2 Arrays  /  8.1.2 Rank 2 Array
Storage  /  8.1.3 Initializing Rank 2 Arrays  /  8.1.4 Example
Problem  /  8.1.5 Whole Array Operations and Array Subsets

	 8.2	 Multidimensional or Rank n Arrays	 372
	 8.3	 Using Fortran Intrinsic Functions with Arrays	 375

8.3.1 Elemental Intrinsic Functions  /  8.3.2 Inquiry Intrinsic
Functions  /  8.3.3 Transformational Intrinsic Functions

	 8.4	 Masked Array Assignment: The WHERE Construct	 378
8.4.1 The WHERE Construct  /  8.4.2 The WHERE Statement

	 8.5	 The FORALL Construct	 381
8.5.1 The Form of the FORALL Construct  /  8.5.2 The Significance
of the FORALL Construct  /  8.5.3 The FORALL Statement

xii	 Table of Contents

	

	 8.6	 Allocatable Arrays	 383
8.6.1 Fortran Allocatable Arrays  /  8.6.2 Using Fortran
Allocatable Arrays in Assignment Statements

	 8.7	 Summary	 393
8.7.1 Summary of Good Programming Practice  / 
8.7.2 Summary of Fortran Statements and Constructs  / 
8.7.3 Exercises

	9	 Additional Features of Procedures	 404
	 9.1	 Passing Multidimensional Arrays to Subroutines and Functions	 404

9.1.1 Explicit Shape Dummy Arrays  /  9.1.2 Assumed-Shape
Dummy Arrays  /  9.1.3 Assumed-Size Dummy Arrays

	 9.2	 The SAVE Attribute and Statement	 417
	 9.3	 Allocatable Arrays in Procedures	 421
	 9.4	 Automatic Arrays in Procedures	 422

9.4.1 Comparing Automatic Arrays and Allocatable
Arrays  /  9.4.2 Example Program

	 9.5	 Allocatable Arrays as Dummy Arguments in Procedures	 430
9.5.1 Allocatable Dummy Arguments  /  9.5.2 Allocatable
Functions

	 9.6	 Pure and Elemental Procedures	 434
9.6.1 Pure Procedures  /  9.6.2 Elemental Procedures  / 
9.6.3 Impure Elemental Procedures

	 9.7	 Internal Procedures	 436
	 9.8	 Submodules	 438
	 9.9	 Summary	 446

9.9.1 Summary of Good Programming Practice  / 
9.9.2 Summary of Fortran Statements and Structures  /  9.9.3 Exercises

	10	 More about Character Variables	 457
 	 10.1	 Character Comparison Operations	 458

10.1.1 The Relational Operators with Character Data  / 
10.1.2 The Lexical Functions LLT, LLE, LGT, and LGE

 	 10.2	 Intrinsic Character Functions	 463
 	 10.3	 Passing Character Variables to Subroutines and Functions	 465
 	 10.4	 Variable-Length Character Functions	 471
 	 10.5	 Internal Files	 473
 	 10.6	 Example Problems	 474
 	 10.7	 Summary	 479

10.7.1 Summary of Good Programming Practice  / 
10.7.2 Summary of Fortran Statements and Structures  / 
10.7.3 Exercises

Table of Contents	 xiii�

	11	 Additional Intrinsic Data Types	 485
 	 11.1	 Alternate Kinds of the REAL Data Type	 485

11.1.1 Kinds of REAL Constants and Variables  /  11.1.2 Determining
the KIND of a Variable  /  11.1.3 Selecting Precision in a Processor-
Independent Manner  /  11.1.4 Determining the KINDs of Data Types
on a Particular Processor  /  11.1.5 Mixed-Mode Arithmetic  / 
11.1.6 Higher Precision Intrinsic Functions  /  11.1.7 When to Use
High-Precision Real Values  /  11.1.8 Solving Large Systems of
Simultaneous Linear Equations

 	 11.2	 Alternate Lengths of the INTEGER Data Type	 509
 	 11.3	 Alternate Kinds of the CHARACTER Data Type	 511
 	 11.4	 The COMPLEX Data Type	 512

11.4.1 Complex Constants and Variables  /  11.4.2 Initializing
Complex Variables  /  11.4.3 Mixed-Mode Arithmetic  / 
11.4.4 Using Complex Numbers with Relational
Operators  /  11.4.5 COMPLEX Intrinsic Functions

 	 11.5	 Summary	 522
11.5.1 Summary of Good Programming Practice  / 
11.5.2 Summary of Fortran Statements and Structures  / 
11.5.3 Exercises

	12	 Derived Data Types	 527
 	 12.1	 Introduction to Derived Data Types	 527
 	 12.2	 Working with Derived Data Types	 529
 	 12.3	 Input and Output of Derived Data Types	 529
 	 12.4	 Declaring Derived Data Types in Modules	 531
 	 12.5	 Returning Derived Types from Functions	 540
 	 12.6	 Dynamic Allocation of Derived Data Types	 544
 	 12.7	 Parameterized Derived Data Types	 545
 	 12.8	 Type Extension	 546
 	 12.9	 Type-Bound Procedures	 548
	12.10	 The ASSOCIATE Construct	 552
	12.11	 Summary	 553

12.11.1 Summary of Good Programming Practice  / 
12.11.2 Summary of Fortran Statements and Structures  / 
12.11.3 Exercises

	13	 Advanced Features of Procedures and Modules	 561
 	 13.1	 Scope and Scoping Units	 562
 	 13.2	 Blocks	 567
 	 13.3	 Recursive Procedures	 568
 	 13.4	 Keyword Arguments and Optional Arguments	 571

xiv	 Table of Contents

	

 	 13.5	 Procedure Interfaces and Interface Blocks	 577
13.5.1 Creating Interface Blocks  /  13.5.2 Notes on the
Use of Interface Blocks

 	 13.6	 Generic Procedures	 581
13.6.1 User-Defined Generic Procedures  /  13.6.2 Generic Interfaces
for Procedures in Modules  /  13.6.3 Generic Bound Procedures

 	 13.7	 Extending Fortran with User-Defined Operators and Assignments	 594
 	 13.8	 Bound Assignments and Operators	 607
 	 13.9	 Restricting Access to the Contents of a Module	 607
	13.10	 Advanced Options of the USE Statement	 611
	13.11	 Intrinsic Modules	 615
	13.12	 Access to Command Line Arguments and Environment Variables	 615

13.12.1 Access to Command Line Arguments  / 
13.12.2 Retrieving Environment Variables

	13.13	 The VOLATILE Attribute and Statement	 618
	13.14	 Summary	 619

13.14.1 Summary of Good Programming Practice  / 
13.14.2 Summary of Fortran Statements and Structures  / 
13.14.3 Exercises

	14	 Advanced I/O Concepts	 633
 	 14.1	 Additional Format Descriptors	 633

14.1.1 Additional Forms of the E and ES Format Descriptors  / 
14.1.2 Engineering Notation—The EN Descriptor  /  14.1.3 Double-
Precision Data—The D Descriptor  /  14.1.4 The Generalized (G)
Format Descriptor  /  14.1.5 The G0 Format Descriptor  / 
14.1.6 The Binary, Octal, and Hexadecimal (B, O, and Z) Descriptors  / 
14.1.7 The TAB Descriptors  /  14.1.8 The Colon (:) Descriptor  / 
14.1.9 Scale Factors—The P Descriptor  /  14.1.10 The SIGN
Descriptors  /  14.1.11 Blank Interpretation: The BN and BZ
Descriptors  /  14.1.12 Rounding Control: The RU, RD, RZ, RN, RC, and RP
Descriptors  /  14.1.13 Decimal Specifier: The DC and DP Descriptors

 	 14.2	 Defaulting Values in List-Directed Input	 642
 	 14.3	 Detailed Description of Fortran I/O Statements	 644

14.3.1 The OPEN Statement  /  14.3.2 The CLOSE Statement  / 
14.3.3 The INQUIRE Statement  /  14.3.4 The READ Statement  / 
14.3.5 Alternate Form of the READ Statement  /  14.3.6 The WRITE
Statement  /  14.3.7 The PRINT Statement  /  14.3.8 File Positioning
Statements  /  14.3.9 The ENDFILE Statement  /  14.3.10 The WAIT
Statement  /  14.3.11 The FLUSH Statement

 	 14.4	 Namelist I/O	 668
 	 14.5	 Unformatted Files	 671
 	 14.6	 Direct Access Files	 673

Table of Contents	 xv�

 	 14.7	 Stream Access Mode	 678
 	 14.8	 Nondefault I/O for Derived Types	 678
 	 14.9	 Asynchronous I/O	 687

14.9.1. Performing Asynchronous I/O  /  14.9.2. Problems with
Asynchronous I/O

	14.10	 Access to Processor-Specific I/O System Information	 689
	14.11	 Summary	 690

14.11.1 Summary of Good Programming Practice  / 
14.11.2 Summary of Fortran Statements and Structures  / 
14.11.3 Exercises

	15	 Pointers and Dynamic Data Structures	 698
 	 15.1	 Pointers and Targets	 699

15.1.1 Pointer Assignment Statements  /  15.1.2 Pointer
Association Status

 	 15.2	 Using Pointers in Assignment Statements	 705
 	 15.3	 Using Pointers with Arrays	 707
 	 15.4	 Dynamic Memory Allocation with Pointers	 709
 	 15.5	 Using Pointers as Components of Derived Data Types	 712
 	 15.6	 Arrays of Pointers	 725
 	 15.7	 Using Pointers in Procedures	 727

15.7.1 Using the INTENT Attribute with Pointers  / 
15.7.2 Pointer-valued Functions

 	 15.8	 Procedure Pointers	 733
 	 15.9	 Binary Tree Structures	 736

15.9.1 The Significance of Binary Tree Structures  / 
15.9.2 Building a Binary Tree Structure

	15.10	 Summary	 756
15.10.1 Summary of Good Programming Practice  / 
15.10.2 Summary of Fortran Statements and Structures  / 
15.10.3 Exercises

	16	 Object-Oriented Programming in Fortran	 763
 	 16.1	 An Introduction to Object-Oriented Programming	 764

16.1.1 Objects  /  16.1.2 Messages  /  16.1.3 Classes  / 
16.1.4 Class Hierarchy and Inheritance  /  16.1.5 Object-
Oriented Programming

 	 16.2	 The Structure of a Fortran Class	 769
 	 16.3	 The CLASS Keyword	 770
 	 16.4	 Implementing Classes and Objects in Fortran	 772

16.4.1 Declaring Fields (Instance Variables)  /  16.4.2 Creating
Methods  /  16.4.3 Creating (Instantiating) Objects from a Class

xvi	 Table of Contents

	

  	16.5	 First Example: A timer Class	 775
16.5.1 Implementing the timer Class  /  16.5.2 Using
the timer Class  /  16.5.3 Comments on the timer Class

 	 16.6	 Categories of Methods	 780
 	 16.7	 Controlling Access to Class Members	 789
 	 16.8	 Finalizers	 790
 	 16.9	 Inheritance and Polymorphism	 794

16.9.1 Superclasses and Subclasses  /  16.9.2 Defining and Using
Subclasses  /  16.9.3 The Relationship between Superclass
Objects and Subclass Objects  /  16.9.4 Polymorphism  / 
16.9.5 The SELECT TYPE Construct

	16.10	 Preventing Methods from Being Overridden in Subclasses	 809
	16.11	 Abstract Classes	 809
	16.12	 Summary	 831

16.12.1 Summary of Good Programming Practice  / 
16.12.2 Summary of Fortran Statements and Structures  / 
16.12.3 Exercises

	17	 Coarrays and Parallel Processing	 837
 	 17.1	 Parallel Processing in Coarray Fortran	 838
 	 17.2	 Creating a Simple Parallel Program	 839
 	 17.3	 Coarrays	 841
 	 17.4	 Synchronization between Images	 843
 	 17.5	 Example: Sorting a Large Data Set	 850
 	 17.6	 Allocatable Coarrays and Derived Data Types	 856
 	 17.7	 Passing Coarrays to Procedures	 857
 	 17.8	 Critical Sections	 858
 	 17.9	 The Perils of parallel Programming	 859
	17.10	 Summary	 863

17.10.1 Summary of Good Programming Practice  / 
17.10.2 Summary of Fortran Statements and Structures  / 
17.10.3 Exercises

	18	 Redundant, Obsolescent, and Deleted Fortran Features	 869
 	 18.1	 Pre-Fortran 90 Character Restrictions	 870
 	 18.2	 Obsolescent Source Form	 870
 	 18.3	 Redundant Data Type	 871
 	 18.4	 Older, Obsolescent, and/or Undesirable Specification Statements	 872

18.4.1 Pre-Fortran 90 Specification Statements  /  18.4.2 The IMPLICIT
Statement  /  18.4.3 The DIMENSION Statement  /  18.4.4 The DATA
Statement  /  18.4.5 The PARAMETER Statement

Table of Contents	 xvii�

 	 18.5	 Sharing Memory Locations: COMMON and EQUIVALENCE	 875
18.5.1 COMMON Blocks  /  18.5.2 Initializing Data in
COMMON Blocks: The BLOCK DATA Subprogram  / 
18.5.3 The Unlabeled COMMON Statement  / 
18.5.4 The EQUIVALENCE Statement

 	 18.6	 Undesirable Subprogram Features	 882
18.6.1 Alternate Subroutine Returns  /  18.6.2 Alternate Entry
Points  /  18.6.3 The Statement Function  /  18.6.4 Passing
Intrinsic Functions as Arguments

 	 18.7	 Miscellaneous Execution Control Features	 889
18.7.1 The PAUSE Statement  /  18.7.2 Arguments Associated
with the STOP Statement  /  18.7.3 The END Statement

 	 18.8	 Obsolete Branching and Looping Structures	 892
18.8.1 The Arithmetic IF Statement  /  18.8.2 The Unconditional
GO TO Statement  /  18.8.3 The Computed GO TO Statement  / 
18.8.4 The Assigned GO TO Statement  /  18.8.5 Older Forms
of DO Loops

 	 18.9	 Redundant Features of I/O Statements	 896
	18.10	 Summary	 897

18.10.1 Summary of Good Programming Practice  / 
18.10.2 Summary of Fortran Statements and Structures

Appendixes
A. The ASCII Character Set 	 903
B. Fortran/C Interoperability 	 904

B.1. Declaring Interoperable Data Types  / 
B.2. Declaring Interoperable Procedures  /  B.3. Sample Programs—
Fortran Calling C  /  B.4. Sample Programs—C Calling Fortran

C. Fortran Intrinsic Procedures	 914
C.1. Classes of Intrinsic Procedures  /  C.2. Alphabetical List of Intrinsic
Procedures  /  C.3. Mathematical and Type Conversion Intrinsic
Procedures  /  C.4. Kind and Numeric Processor Intrinsic
Functions  /  C.5. System Environment Procedures  /  C.6. Bit Intrinsic
Procedures  /  C.7. Character Intrinsic Functions  /  C.8. Array and
Pointer Intrinsic Functions  /  C.9. Miscellaneous Inquiry Functions  / 
C.10. Miscellaneous Procedures  /  C.11. Coarray Functions

D. Order of Statements in a Fortran Program 	 961
E. Glossary	 963
F. Answers to Quizzes	 984

		 Index	 1002
		 Summary of Selected Fortran Statements and Structures	 1022

xviii	 Table of Contents

	

P R E F A C E

The first edition of this book was conceived as a result of my experience in writing
and maintaining large Fortran programs in both the defense and geophysical fields.
During my time in industry, it became obvious that the strategies and techniques
required to write large, maintainable Fortran programs were quite different from what
new engineers were learning in their Fortran programming classes at school. The
incredible cost of maintaining and modifying large programs once they are placed into
service absolutely demands that they be written to be easily understood and modified
by people other than their original programmers. My goal for this book is to teach
simultaneously both the fundamentals of the Fortran language and a programming
style that results in good, maintainable programs. In addition, it is intended to serve as
a reference for graduates working in industry.

It is quite difficult to teach undergraduates the importance of taking extra effort
during the early stages of the program design process in order to make their programs
more maintainable. Class programming assignments must by their very nature be sim-
ple enough for one person to complete in a short period of time, and they do not have
to be maintained for years. Because the projects are simple, a student can often “wing
it” and still produce working code. A student can take a course, perform all of the pro-
gramming assignments, pass all of the tests, and still not learn the habits that are really
needed when working on large projects in industry.

From the very beginning, this book teaches Fortran in a style suitable for use on
large projects. It emphasizes the importance of going through a detailed design pro-
cess before any code is written, using a top-down design technique to break the pro-
gram up into logical portions that can be implemented separately. It stresses the use of
procedures to implement those individual portions, and the importance of unit testing
before the procedures are combined into a finished product. Finally, it emphasizes the
importance of exhaustively testing the finished program with many different input data
sets before it is released for use.

In addition, this book teaches Fortran as it is actually encountered by engineers and
scientists working in industry and in laboratories. One fact of life is common in all pro-
gramming environments: Large amounts of old legacy code that have to be maintained.
The legacy code at a particular site may have been originally written in Fortran IV (or
an even earlier version!), and it may use programming constructs that are no longer
common today. For example, such code may use arithmetic IF statements, or computed
or assigned GO TO statements. Chapter 18 is devoted to those older features of the lan-
guage that are no longer commonly used, but that are encountered in legacy code.

xx	 Preface

The chapter emphasizes that these features should never be used in a new program, but
also prepares the student to handle them when he or she encounters them.

CHANGES IN THIS EDITION

This edition builds directly on the success of Fortran 95/2003 for Scientists and Engi-
neers, 3/e. It preserves the structure of the previous edition, while weaving the new Fortran
2008 material (and limited material from the proposed Fortran 2015 standard) throughout
the text. It is amazing, but Fortran started life around 1954, and it is still evolving.

Most of the additions in Fortran 2008 are logical extensions of existing capabili-
ties of Fortran 2003, and they are integrated into the text in the proper chapters. How-
ever, the use of parallel processing and Coarray Fortran is completely new, and Chapter
17 has been added to cover that material.

The vast majority of Fortran courses are limited to one-quarter or one semester,
and the student is expected to pick up both the basics of the Fortran language and the
concept of how to program. Such a course would cover Chapters 1 through 7 of this
text, plus selected topics in Chapters 8 and 9 if there is time. This provides a good
foundation for students to build on in their own time as they use the language in
practical projects.

Advanced students and practicing scientists and engineers will need the material on
COMPLEX numbers, derived data types, and pointers found in Chapters 11 through 15.
Practicing scientists and engineers will almost certainly need the material on obsolete,
redundant, and deleted Fortran features found in Chapter 18. These materials are rarely
taught in the classroom, but they are included here to make the book a useful reference
text when the language is actually used to solve real-world problems.

FEATURES OF THIS BOOK

Many features of this book are designed to emphasize the proper way to write reliable
Fortran programs. These features should serve a student well as he or she is first learn-
ing Fortran, and should also be useful to the practitioner on the job. They include:

1.	 Emphasis on Modern Fortran.
		 The book consistently teaches the best current practice in all of its examples.

Many modern Fortran 2008 features duplicate and supersede older features of
the Fortran language. In those cases, the proper usage of the modern language
is presented. Examples of older usage are largely relegated to Chapter 18,
where their old/undesirable nature is emphasized. Examples of modern Fortran
features that supersede older features are the use of modules to share data
instead of COMMON blocks, the use of DO . . . END DO loops instead of DO . . .
CONTINUE loops, the use of internal procedures instead of statement functions,
and the use of CASE constructs instead of computed GOTOs.

	

Preface	 xxi�

2.	 Emphasis on Strong Typing.
		 The IMPLICIT NONE statement is used consistently throughout the book to

force the explicit typing of every variable used in every program, and to catch
common typographical errors at compilation time. In conjunction with the ex-
plicit declaration of every variable in a program, the book emphasizes the im-
portance of creating a data dictionary that describes the purpose of each
variable in a program unit.

3.	 Emphasis on Top-Down Design Methodology.
		 The book introduces a top-down design methodology in Chapter 3, and then

uses it consistently throughout the rest of the book. This methodology encour-
ages a student to think about the proper design of a program before beginning
to code. It emphasizes the importance of clearly defining the problem to be
solved and the required inputs and outputs before any other work is begun.
Once the problem is properly defined, it teaches the student to employ stepwise
refinement to break the task down into successively smaller subtasks, and to
implement the subtasks as separate subroutines or functions. Finally, it teaches
the importance of testing at all stages of the process, both unit testing of the
component routines and exhaustive testing of the final product. Several exam-
ples are given of programs that work properly for some data sets, and then fail
for others.

		 The formal design process taught by the book may be summarized as
follows:

∙	 Clearly state the problem that you are trying to solve.
∙	 Define the inputs required by the program and the outputs to be produced by

the program.
∙	 Describe the algorithm that you intend to implement in the program. This

step involves top-down design and stepwise decomposition, using pseudo-
code or flow charts.

∙	 Turn the algorithm into Fortran statements.
∙	 Test the Fortran program. This step includes unit testing of specific subpro-

grams, and also exhaustive testing of the final program with many different
data sets.

4.	 Emphasis on Procedures.
		 The book emphasizes the use of subroutines and functions to logically decom-

pose tasks into smaller subtasks. It teaches the advantages of procedures for data
hiding. It also emphasizes the importance of unit testing procedures before they
are combined into the final program. In addition, the book teaches about the
common mistakes made with procedures, and how to avoid them (argument type
mismatches, array length mismatches, etc.). It emphasizes the advantages asso-
ciated with explicit interfaces to procedures, which allow the Fortran compiler
to catch most common programming errors at compilation time.

5.	 Emphasis on Portability and Standard Fortran.
		 The book stresses the importance of writing portable Fortran code, so that a

program can easily be moved from one type of computer to another one.

It teaches students to use only standard Fortran statements in their programs, so
that they will be as portable as possible. In addition, it teaches the use of
features such as the SELECTED_REAL_KIND function to avoid precision and kind
differences when moving from computer to computer.

		 The book also teaches students to isolate machine-dependent code (such as
code that calls machine-dependent system libraries) into a few specific proce-
dures, so that only those procedures will have to be rewritten when a program
is ported between computers.

6.	 Good Programming Practice Boxes.
		 These boxes highlight good programming practices when they are introduced

for the convenience of the student. In addition, the good programming practices
introduced in a chapter are summarized at the end of the chapter. An example
Good Programming Practice Box is shown below:

Good Programming Practice
Always indent the body of an IF structure by two or more spaces to improve the
readability of the code.

7.	 Programming Pitfalls Boxes
		 These boxes highlight common errors so that they can be avoided. An exam-

ple Programming Pitfalls Box is shown below:

Programming Pitfalls
Beware of integer arithmetic. Integer division often gives unexpected results.

8.	 Emphasis on Pointers and Dynamic Data Structures.
		 Chapter 15 contains a detailed discussion of Fortran pointers, including pos-

sible problems resulting from the incorrect use of pointers such as memory
leaks and pointers to deallocated memory. Examples of dynamic data struc-
tures in the chapter include linked lists and binary trees.

		 Chapter 16 contains a discussion of Fortran objects and object-oriented pro-
gramming, including the use of dynamic pointers to achieve polymorphic behavior.

9.	 Use of Sidebars.
		 A number of sidebars are scattered throughout the book. These sidebars pro-

vide additional information of potential interest to the student. Some sidebars
are historical in nature. For example, one sidebar in Chapter 1 describes the
IBM Model 704, the first computer to ever run Fortran. Other sidebars

xxii	 Preface

	

reinforce lessons from the main text. For example, Chapter 9 contains a side-
bar reviewing and summarizing the many different types of arrays found in
modern Fortran.

10.  Completeness.
		 Finally, the book endeavors to be a complete reference to the modern Fortran

language, so that a practitioner can locate any required information quickly.
Special attention has been paid to the index to make features easy to find. A
special effort has also been made to cover such obscure and little understood
features as passing procedure names by reference, and defaulting values in
list-directed input statements.

PEDAGOGICAL FEATURES

The book includes several features designed to aid student comprehension. Each
chapter begins with a list of the objectives that should be achieved in that chapter.
A total of 27 quizzes appear scattered throughout the chapters, with answers to all
questions included in Appendix F. These quizzes can serve as a useful self-test of
comprehension. In addition, there are approximately 360 end-of-chapter exercises.
Answers to selected exercises are available at the book’s Web site, and of course an-
swers to all exercises are included in the Instructor’s Manual. Good programming
practices are highlighted in all chapters with special Good Programming Practice
boxes, and common errors are highlighted in Programming Pitfalls boxes. End-of-
chapter materials include Summaries of Good Programming Practice and Summaries
of Fortran Statements and Structures. Finally, a detailed description of every Fortran
intrinsic procedure is included in Appendix C, and an extensive Glossary is included
in Appendix E.

The book is accompanied by an Instructor’s Manual, containing the solutions to
all end-of-chapter exercises. Instructors can also download the solutions in the
Instructor’s Manual from the book’s Web site. The source code for all examples in
the book, plus other supplemental materials, can be downloaded by anyone from the
book’s Web site.

A NOTE ABOUT FORTRAN COMPILERS

Two Fortran compilers were used during the preparation of this book: the Intel Visual
Fortran Compiler Version 16.0 and the GNU G95 Fortran compiler. Both compilers
provide essentially complete implementations of Fortran 2008, with only a very few
minor items not yet implemented. They are also both looking to the future, implement-
ing features from the proposed Fortran 2015 standard.

I highly recommend both compilers to potential users. The great advantage of
Intel Fortran is the very nice integrated debugging environment, and the great disad-
vantage is cost. The G95 compiler is free, but it is somewhat harder to debug.

Preface	 xxiii�

A FINAL NOTE TO THE USER

No matter how hard I try to proofread a document like this book, it is inevitable that
some typographical errors will slip through and appear in print. If you should spot any
such errors, please drop me a note via the publisher, and I will do my best to get them
eliminated from subsequent printings and editions. Thank you very much for your help
in this matter.

I will maintain a complete list of errata and corrections at the book’s World Wide Web
site, which is www.mhhe.com/chapman4e. Please check that site for any updates and/or
corrections.

ACKNOWLEDGMENTS

I would like to thank Raghu Srinivasan and the team at McGraw-Hill Education for
making this revision possible. In addition, I would like to thank my wife Rosa and
daughter Devorah for their support during the revision process. (In previous editions, I
had thanked our other seven children as well, but they have all now flown the coop!)

Stephen J. Chapman
Melbourne, Victoria, Australia

August 7, 2016

xxiv	 Preface

	 1

1

Introduction to Computers
and the Fortran Language

OBJECTIVES

∙	 Know the basic components of a computer.
∙	 Understand binary, octal, and hexadecimal numbers.
∙	 Learn about the history of the Fortran language.

The computer was probably the most important invention of the twentieth century.
It affects our lives profoundly in very many ways. When we go to the grocery store,
the scanners that check out our groceries are run by computers. Our bank balances
are maintained by computers, and the automatic teller machines and credit and debit
cards that allow us to make banking transactions at any time of the day or night are
run by more computers. Computers control our telephone and electric power sys-
tems, run our microwave ovens and other appliances, and control the engines in our
cars. Almost any business in the developed world would collapse overnight if it were
suddenly deprived of its computers. Considering their importance in our lives, it is
almost impossible to believe that the first electronic computers were invented just
about 75 years ago.

Just what is this device that has had such an impact on all of our lives? A computer
is a special type of machine that stores information, and can perform mathematical
calculations on that information at speeds much faster than human beings can think. A
program, which is stored in the computer’s memory, tells the computer what sequence
of calculations is required, and which information to perform the calculations on. Most
computers are very flexible. For example, the computer on which I write these words
can also balance my checkbook, if I just execute a different program on it.

Computers can store huge amounts of information, and with proper programming,
they can make that information instantly available when it is needed. For example, a
bank’s computer can hold the complete list of all the deposits and debits made by
every one of its customers. On a larger scale, credit companies use their computers to
hold the credit histories of every person in the United States—literally billions of

2	 chapter 1:   Introduction to Computers and the Fortran Language

1
pieces of information. When requested, they can search through those billions of
pieces of information to recover the credit records of any single person, and present
those records to the user in a matter of seconds.

It is important to realize that computers do not think as humans understand
thinking. They merely follow the steps contained in their programs. When a computer
appears to be doing something clever, it is because a clever person has written the pro-
gram that it is executing. That is where we humans come into the act. It is our collec-
tive creativity that allows the computer to perform its seeming miracles. This book
will help teach you how to write programs of your own, so that the computer will do
what you want it to do.

1.1
THE COMPUTER

A block diagram of a typical computer is shown in Figure 1-1. The major components
of the computer are the central processing unit (CPU), main memory, secondary
memory, and input and output devices. These components are described in the para-
graphs below.

FIGURE 1-1
A block diagram of a typical computer.

Main
memory

Secondary
memory

Internal
memory

(registers)

Control
unit

Memory
cache

Arithmetic
logic unit

Output
devices

Central processing unit

Introduction to Computers and the Fortran Language	 3�

	

1
1.1.1  The CPU

The central processing unit is the heart of any computer. It is divided into a control unit,
an arithmetic logic unit (ALU), and internal memory. The control unit within the CPU
controls all of the other parts of the computer, while the ALU performs the actual math-
ematical calculations. The internal memory within a CPU consists of a series of mem-
ory registers used for the temporary storage of intermediate results during calculations,
plus a memory cache to temporarily store data that will be needed in the near future.

The control unit of the CPU interprets the instructions of the computer program. It
also fetches data values from main memory (or the memory cache) and stores them in
the memory registers, and sends data values from memory registers to output devices
or main memory. For example, if a program says to multiply two numbers together and
save the result, the control unit will fetch the two numbers from main memory and
store them in registers. Then, it will present the numbers in the registers to the ALU
along with directions to multiply them and store the results in another register. Finally,
after the ALU multiplies the numbers, the control unit will take the result from the
destination register and store it back into the memory cache. (Other parts of the CPU
copy the data from the memory cache to main memory in slower time.)

Modern CPUs have become dramatically faster by incorporating multiple ALUs
running in parallel, allowing more operations to be performed in a given amount of
time. They also incorporate larger memory caches on the CPU chip, allowing data to
be fetched and saved very rapidly.

1.1.2  Memory

The memory of a computer is divided into three major types of memory: cache mem-
ory, main or primary memory, and secondary memory. Cache memory is memory
stored on the CPU chip itself. This memory can be accessed very rapidly, allowing
calculations to proceed at very high speed. The control unit looks ahead in the program
to see what data will be needed, and pre-fetches it from main memory into the memory
cache so that it can be used with minimal delay. The control unit also copies the results
of calculations from the cache back to main memory when they are no longer needed.

Main memory usually consists of separate semiconductor chips connected to the
CPU by conductors called a memory bus. It is very fast, and relatively inexpensive com-
pared to the memory on the CPU itself. Data that is stored in main memory can be fetched
for use in a few nanoseconds or less (sometimes much less) on a modern computer. Be-
cause it is so fast and cheap, main memory is used to temporarily store the program
currently being executed by the computer, as well as the data that the program requires.

Main memory is not used for the permanent storage of programs or data. Most
main memory is volatile, meaning that it is erased whenever the computer’s power is
turned off. Besides, main memory is relatively expensive, so we only buy enough to
hold all of the programs actually being executed at any given time.

Secondary memory consists of devices that are slower and cheaper than main mem-
ory. They can store much more information for much less money than main memory can.
In addition, most secondary memory devices are nonvolatile, meaning that they retain

4	 chapter 1:   Introduction to Computers and the Fortran Language

1
the programs and data stored in them whenever the computer’s power is turned off. Typ-
ical secondary memory devices are hard disks, solid-state drives (SSD), USB memory
sticks, and DVDs. Secondary storage devices are normally used to store programs and
data that are not needed at the moment, but that may be needed some time in the future.

1.1.3  Input and Output Devices

Data is entered into a computer through an input device, and is output through an out-
put device. The most common input devices on a modern computer are the keyboard
and the mouse. We can type programs or data into a computer with a keyboard. Other
types of input devices found on some computers include touchscreens, scanners,
microphones, and cameras.

Output devices permit us to use the data stored in a computer. The most common
output devices on today’s computers are displays and printers. Other types of output
devices include plotters and speakers.

1.2
DATA REPRESENTATION IN A COMPUTER

Computer memories are composed of billions of individual switches, each of which can
be ON or OFF, but not at a state in between. Each switch represents one binary digit (also
called a bit); the ON state is interpreted as a binary 1, and the OFF state is interpreted as
a binary 0. Taken by itself, a single switch can only represent the numbers 0 and 1. Since
we obviously need to work with numbers other than 0 and 1, a number of bits are grouped
together to represent each number used in a computer. When several bits are grouped
together, they can be used to represent numbers in the binary (base 2) number system.

The smallest common grouping of bits is called a byte. A byte is a group of 8 bits
that are used together to represent a binary number. The byte is the fundamental unit
used to measure the capacity of a computer’s memory. For example, the personal com-
puter on which I am writing these words has a main memory of 24 gigabytes
(24,000,000,000 bytes) and a secondary memory (disk drive) with a storage of
2 terabytes (2,000,000,000,000 bytes).

The next larger grouping of bits in a computer is called a word. A word consists
of 2, 4, or more consecutive bytes that are used to represent a single number in mem-
ory. The size of a word varies from computer to computer, so words are not a particu-
larly good way to judge the size of computer memories. Modern CPUs tend to use
words with lengths of either 32 or 64 bits.

1.2.1  The Binary Number System

In the familiar base 10 number system, the smallest (rightmost) digit of a number is the
ones place (100). The next digit is in the tens place (101), and the next one is in the
hundreds place (102), etc. Thus, the number 12210 is really (1 × 102) + (2 × 101) +
(2 × 100). Each digit is worth a power of 10 more than the digit to the right of it in the
base 10 system (see Figure 1-2a).

Introduction to Computers and the Fortran Language	 5�

	

1

Similarly, in the binary number system, the smallest (rightmost) digit is the ones
place (20). The next digit is in the twos place (21), and the next one is in the fours place
(22), etc. Each digit is worth a power of 2 more than the digit to the right of it in the
base 2 system. For example, the binary number 1012 is really (1 × 22) + (0 × 21) +
(1 × 20) = 5, and the binary number 1112 = 7 (see Figure 1-2b).

Note that three binary digits can be used to represent eight possible values: 0 (= 0002)
to 7 (= 1112). In general, if n bits are grouped together to form a binary number, then they
can represent 2n possible values. Thus, a group of 8 bits (1 byte) can represent 256 possi-
ble values, a group of 16 bits (2 bytes) can be used to represent 65,536 possible values,
and a group of 32 bits (4 bytes) can be used to represent 4,294,967,296 possible values.

In a typical implementation, half of all possible values are reserved for represent-
ing negative numbers, and half of the values are reserved for representing zero plus the
positive numbers. Thus, a group of 8 bits (1 byte) is usually used to represent numbers
between −128 and +127, including 0, and a group of 16 bits (2 bytes) is usually used
to represent numbers between −32,768 and +32,767, including 0.1

FIGURE 1-2
(a) The base 10 number 122 is really (1 × 102) + (2 × 101) +
(2 × 100). (b) Similarly, the base 2 number 1012 is really
(1 × 22) + (0 × 21) + (1 × 20).

100’s place

10’s place

1’s place

(a)

1 2 2

4’s place

2’s place

1’s place

(b)

1 0 12 = 5 10

1 The most common scheme for representing negative numbers in a computer’s memory is the so-called
two’s complement representation, which is described in the sidebar.

TWO’S COMPLEMENT ARITHMETIC

The most common way to represent negative numbers in the binary number system is
the two’s complement representation. What is two’s complement, and what is so spe-
cial about it? Let’s find out.

The Two’s Complement Representation of Negative Numbers
In the two’s complement representation, the leftmost bit of a number is the sign bit.
If that bit is 0, then the number is positive; if it is 1, then the number is negative. To
change a positive number into the corresponding negative number in the two’s comple-
ment system, we perform two steps:

	1.	 Complement the number (change all 1s to 0 and all 0s to 1).
	2.	 Add 1 to the complemented number.

6	 chapter 1:   Introduction to Computers and the Fortran Language

1 Let’s illustrate the process using simple 8-bit integers. As we already know, the
8-bit binary representation of the number 3 would be 00000011. The two’s comple-
ment representation of the number −3 would be found as follows:

	1.	 Complement the positive number:	 11111100
	2.	 Add 1 to the complemented number:	 11111100 + 1 = 11111101

Exactly the same process is used to convert negative numbers back to positive num-
bers. To convert the number −3 (11111101) back to a positive 3, we would:

	1.	 Complement the negative number:	 00000010
	2.	 Add 1 to the complemented number:	 00000010 + 1 = 00000011

Two’s Complement Arithmetic
Now we know how to represent numbers in two’s complement representation, and to
convert between positive and two’s complement negative numbers. The special
advantage of two’s complement arithmetic is that positive and negative numbers may
be added together according to the rules of ordinary addition without regard to the
sign, and the resulting answer will be correct, including the proper sign. Because of
this fact, a computer may add any two integers together without checking to see what
the signs of the two integers are. This simplifies the design of computer circuits.

Let’s do a few examples to illustrate this point.

	1.	 Add 3 + 4 in two’s complement arithmetic.
3 00000011

+4 00000100
7 00000111

	2.	 Add (−3) + (−4) in two’s complement arithmetic.
3 11111101

+−4 11111100
−7 111111001

In a case like this, we ignore the extra ninth bit resulting from the sum, and the
answer is 11111001. The two’s complement of 11111001 is 00000111 or 7, so the
result of the addition was −7!

	3.	 Add 3 + (−4) in two’s complement arithmetic.

	
−3 00000011

+−4 11111100
−1 11111111

The answer is 11111111. The two’s complement of 11111111 is 00000001 or 1, so the
result of the addition was −1.

With two’s complement numbers, binary addition comes up with the correct answer
regardless of whether the numbers being added are both positive, both negative, or mixed.

Introduction to Computers and the Fortran Language	 7�

	

1
1.2.2  Octal and Hexadecimal Representations of Binary Numbers

Computers work in the binary number system, but people think in the decimal number
system. Fortunately, we can program the computer to accept inputs and give its outputs
in the decimal system, converting them internally to binary form for processing. Most
of the time, the fact that computers work with binary numbers is irrelevant to the
programmer.

However, there are some cases in which a scientist or engineer has to work directly
with the binary representations coded into the computer. For example, individual bits
or groups of bits within a word might contain status information about the operation of
some machine. If so, the programmer will have to consider the individual bits of the
word, and work in the binary number system.

A scientist or engineer who has to work in the binary number system immediately
faces the problem that binary numbers are unwieldy. For example, a number like
110010 in the decimal system is 0100010011002 in the binary system. It is easy to get
lost working with such a number! To avoid this problem, we customarily break binary
numbers down into groups of 3 or 4 bits, and represent those bits by a single base
8 (octal) or base 16 (hexadecimal) number.

To understand this idea, note that a group of 3 bits can represent any number
between 0 (= 0002) and 7 (= 1112). These are the numbers found in an octal or base 8
arithmetic system. An octal number system has seven digits: 0 through 7. We can
break a binary number up into groups of 3 bits, and substitute the appropriate octal
digit for each group. Let’s use the number 0100010011002 as an example. Breaking
the number into groups of three digits yields 010∣001∣001∣1002. If each group of 3 bits
is replaced by the appropriate octal number, the value can be written as 21148. The
octal number represents exactly the same pattern of bits as the binary number, but it is
more compact.

Similarly, a group of 4 bits can represent any number between 0 (= 00002) and
15 (= 11112). These are the numbers found in a hexadecimal or base 16 arithmetic
system. A hexadecimal number system has 16 digits: 0 through 9 and A through F.
Since the hexadecimal system needs 16 digits, we use digits 0 through 9 for the first
10 of them, and then letters A through F for the remaining 6. Thus, 916 = 910, A16 =
1010, B16 = 1110, and so forth. We can break a binary number up into groups of 4
bits, and substitute the appropriate hexadecimal digit for each group. Let’s use the
number 0100010011002 again as an example. Breaking the number into groups of
four digits yields 0100∣0100∣11002. If each group of 4 bits is replaced by the appro-
priate hexadecimal number, the value can be written as 44C16. The hexadecimal
number represents exactly the same pattern of bits as the binary number, but more
compactly.

Some computer vendors prefer to use octal numbers to represent bit patterns,
while other computer vendors prefer to use hexadecimal numbers to represent bit pat-
terns. Both representations are equivalent, in that they represent the pattern of bits in a
compact form. A Fortran language program can input or output numbers in any of the
four formats (decimal, binary, octal, or hexadecimal). Table 1-1 lists the decimal,
binary, octal, and hexadecimal forms of the numbers 0 to 15.

8	 chapter 1:   Introduction to Computers and the Fortran Language

1

1.2.3  Types of Data Stored in Memory

Three common types of data are stored in a computer’s memory: character data,
integer data, and real data (numbers with a decimal point). Each type of data has
different characteristics, and takes up a different amount of memory in the
computer.

Character Data
The character data type consists of characters and symbols. A typical system for

representing character data in a non-Oriental language must include the following symbols:

	 1.	 The 26 uppercase letters A through Z
	 2.	 The 26 lowercase letters a through z
	 3.	 The 10 digits 0 through 9
	 4.	 Miscellaneous common symbols, such as ",(), {}, [], !, ~, @, #, $,

%, ^, &, and *.
	 5.	 Any special letters or symbols required by the language, such as à, ç, ë, and £.

Since the total number of characters and symbols required to write Western
languages is less than 256, it is customary to use 1 byte of memory to store each
character. Therefore, 10,000 characters would occupy 10,000 bytes of the comput-
er’s memory.

The particular bit values corresponding to each letter or symbol may vary from
computer to computer, depending upon the coding system used for the characters. The
most important coding system is ASCII, which stands for the American Standard Code

TABLE 1-1
Table of decimal, binary, octal, and
hexadecimal numbers

Decimal Binary Octal Hexadecimal

0 0000 0 0
1 0001 1 1
2 0010 2 2
3 0011 3 3
4 0100 4 4
5 0101 5 5
6 0110 6 6
7 0111 7 7
8 1000 10 8
9 1001 11 9

10 1010 12 A
11 1011 13 B
12 1100 14 C
13 1101 15 D
14 1110 16 E
15 1111 17 F

Introduction to Computers and the Fortran Language	 9�

	

1
for Information Interchange (ANSI X3.4 1986, or ISO/IEC 646:1991). The ASCII
coding system defines the values to associate with the first 128 of the 256 possible
values that can be stored in a 1-byte character. The 8-bit codes corresponding to each
letter and number in the ASCII coding system are given in Appendix A.

The second 128 characters that can be stored in a 1-byte character are not defined
by the ASCII character set, and they used to be defined differently depending on the
language used in a particular country or region. These definitions are a part of the ISO
8859 standard series, and they are sometimes referred to as “code pages.” For exam-
ple, the ISO 8859-1 (Latin 1) character set is the version used in Western European
countries. There are similar code pages available for Eastern European languages,
Arabic, Greek, Hebrew, and so forth. Unfortunately, the use of different code pages
made the output of programs and the contents of files appear different in different
countries. As a result, these code pages are falling out of favor, and being replaced by
the Unicode system described below.

Some Oriental languages such as Chinese and Japanese contain more than 256
characters (in fact, about 4000 characters are needed to represent each of these
languages). To accommodate these languages and all of the other languages in the
world, a coding system called Unicode2 has been developed. In the Unicode cod-
ing system, each character is stored in 2 bytes of memory, so the Unicode system
supports 65,536 possible different characters. The first 128 Unicode characters are
identical to the ASCII character set, and other blocks of characters are devoted to
various languages such as Chinese, Japanese, Hebrew, Arabic, and Hindi. When
the Unicode coding system is used, character data can be represented in any
language.

Integer Data
The integer data type consists of the positive integers, the negative integers, and

zero. The amount of memory devoted to storing an integer will vary from computer to
computer, but will usually be 1, 2, 4, or 8 bytes. Four-byte integers are the most com-
mon type in modern computers.

Since a finite number of bits are used to store each value, only integers that fall
within a certain range can be represented on a computer. Usually, the smallest number
that can be stored in an n-bit integer is

	 Smallest integer value = −2n−1	 (1-1)

and the largest number that can be stored in an n-bit integer is

	 Largest integer value = 2n−1 − 1	 (1-2)

For a 4-byte integer, the smallest and largest possible values are −2,147,483,648 and
2,147,483,647, respectively. Attempts to use an integer larger than the largest possible

2 Also referred to by the corresponding standard number, ISO/IEC 10646:2014.

