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P R E F A C E

The first edition of this book was conceived as a result of my experience in writing 
and maintaining large Fortran programs in both the defense and geophysical fields. 
During my time in industry, it became obvious that the strategies and techniques 
required to write large, maintainable Fortran programs were quite different from what 
new engineers were learning in their Fortran programming classes at school. The 
incredible cost of maintaining and modifying large programs once they are placed into 
service absolutely demands that they be written to be easily understood and modified 
by people other than their original programmers. My goal for this book is to teach 
simultaneously both the fundamentals of the Fortran language and a programming 
style that results in good, maintainable programs. In addition, it is intended to serve as 
a reference for graduates working in industry.

It is quite difficult to teach undergraduates the importance of taking extra effort 
during the early stages of the program design process in order to make their programs 
more maintainable. Class programming assignments must by their very nature be sim-
ple enough for one person to complete in a short period of time, and they do not have 
to be maintained for years. Because the projects are simple, a student can often “wing 
it” and still produce working code. A student can take a course, perform all of the pro-
gramming assignments, pass all of the tests, and still not learn the habits that are really 
needed when working on large projects in industry.

From the very beginning, this book teaches Fortran in a style suitable for use on 
large projects. It emphasizes the importance of going through a detailed design pro-
cess before any code is written, using a top-down design technique to break the pro-
gram up into logical portions that can be implemented separately. It stresses the use of 
procedures to implement those individual portions, and the importance of unit testing 
before the procedures are combined into a finished product. Finally, it emphasizes the 
importance of exhaustively testing the finished program with many different input data 
sets before it is released for use.

In addition, this book teaches Fortran as it is actually encountered by engineers and 
scientists working in industry and in laboratories. One fact of life is common in all pro-
gramming environments: Large amounts of old legacy code that have to be maintained. 
The legacy code at a particular site may have been originally written in Fortran IV (or 
an even earlier version!), and it may use programming constructs that are no longer 
common today. For example, such code may use arithmetic IF statements, or computed 
or assigned GO TO statements. Chapter 18 is devoted to those older features of the lan-
guage that are no longer commonly used, but that are encountered in legacy code. 
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The chapter emphasizes that these features should never be used in a new program, but 
also prepares the student to handle them when he or she encounters them.

CHANGES IN THIS EDITION

This edition builds directly on the success of Fortran 95/2003 for Scientists and Engi-
neers, 3/e. It preserves the structure of the previous edition, while weaving the new Fortran 
2008 material (and limited material from the proposed Fortran 2015 standard) throughout 
the text. It is amazing, but Fortran started life around 1954, and it is still evolving.

Most of the additions in Fortran 2008 are logical extensions of existing capabili-
ties of Fortran 2003, and they are integrated into the text in the proper chapters. How-
ever, the use of parallel processing and Coarray Fortran is completely new, and Chapter 
17 has been added to cover that material.

The vast majority of Fortran courses are limited to one-quarter or one semester, 
and the student is expected to pick up both the basics of the Fortran language and the 
concept of how to program. Such a course would cover Chapters 1 through 7 of this 
text, plus selected topics in Chapters 8 and 9 if there is time. This provides a good 
foundation for students to build on in their own time as they use the language in 
practical projects.

Advanced students and practicing scientists and engineers will need the material on 
COMPLEX numbers, derived data types, and pointers found in Chapters 11 through 15. 
Practicing scientists and engineers will almost certainly need the material on obsolete, 
redundant, and deleted Fortran features found in Chapter 18. These materials are rarely 
taught in the classroom, but they are included here to make the book a useful reference 
text when the language is actually used to solve real-world problems.

FEATURES OF THIS BOOK

Many features of this book are designed to emphasize the proper way to write reliable 
Fortran programs. These features should serve a student well as he or she is first learn-
ing Fortran, and should also be useful to the practitioner on the job. They include:

1.	 Emphasis on Modern Fortran.
		  The book consistently teaches the best current practice in all of its examples. 

Many modern Fortran 2008 features duplicate and supersede older features of 
the Fortran language. In those cases, the proper usage of the modern language 
is presented. Examples of older usage are largely relegated to Chapter 18, 
where their old/undesirable nature is emphasized. Examples of modern Fortran 
features that supersede older features are the use of modules to share data 
instead of COMMON blocks, the use of DO . . . END DO loops instead of DO . . . 
CONTINUE loops, the use of internal procedures instead of statement functions, 
and the use of CASE constructs instead of computed GOTOs.
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2.	 Emphasis on Strong Typing.
		  The IMPLICIT NONE statement is used consistently throughout the book to 

force the explicit typing of every variable used in every program, and to catch 
common typographical errors at compilation time. In conjunction with the ex-
plicit declaration of every variable in a program, the book emphasizes the im-
portance of creating a data dictionary that describes the purpose of each 
variable in a program unit.

3.	 Emphasis on Top-Down Design Methodology.
		  The book introduces a top-down design methodology in Chapter 3, and then 

uses it consistently throughout the rest of the book. This methodology encour-
ages a student to think about the proper design of a program before beginning 
to code. It emphasizes the importance of clearly defining the problem to be 
solved and the required inputs and outputs before any other work is begun. 
Once the problem is properly defined, it teaches the student to employ stepwise 
refinement to break the task down into successively smaller subtasks, and to 
implement the subtasks as separate subroutines or functions. Finally, it teaches 
the importance of testing at all stages of the process, both unit testing of the 
component routines and exhaustive testing of the final product. Several exam-
ples are given of programs that work properly for some data sets, and then fail 
for others.

		  The formal design process taught by the book may be summarized as  
follows:

∙	 Clearly state the problem that you are trying to solve.
∙	 Define the inputs required by the program and the outputs to be produced by 

the program.
∙	 Describe the algorithm that you intend to implement in the program. This 

step involves top-down design and stepwise decomposition, using pseudo-
code or flow charts.

∙	 Turn the algorithm into Fortran statements.
∙	 Test the Fortran program. This step includes unit testing of specific subpro-

grams, and also exhaustive testing of the final program with many different 
data sets.

4.	 Emphasis on Procedures.
		  The book emphasizes the use of subroutines and functions to logically decom-

pose tasks into smaller subtasks. It teaches the advantages of procedures for data 
hiding. It also emphasizes the importance of unit testing procedures before they 
are combined into the final program. In addition, the book teaches about the 
common mistakes made with procedures, and how to avoid them (argument type 
mismatches, array length mismatches, etc.). It emphasizes the advantages asso-
ciated with explicit interfaces to procedures, which allow the Fortran compiler 
to catch most common programming errors at compilation time.

5.	 Emphasis on Portability and Standard Fortran.
		  The book stresses the importance of writing portable Fortran code, so that a 

program can easily be moved from one type of computer to another one. 



It teaches students to use only standard Fortran statements in their programs, so 
that they will be as portable as possible. In addition, it teaches the use of 
features such as the SELECTED_REAL_KIND function to avoid precision and kind 
differences when moving from computer to computer.

		  The book also teaches students to isolate machine-dependent code (such as 
code that calls machine-dependent system libraries) into a few specific proce-
dures, so that only those procedures will have to be rewritten when a program 
is ported between computers.

6.	 Good Programming Practice Boxes.
		  These boxes highlight good programming practices when they are introduced 

for the convenience of the student. In addition, the good programming practices 
introduced in a chapter are summarized at the end of the chapter. An example 
Good Programming Practice Box is shown below:

Good Programming Practice
Always indent the body of an IF structure by two or more spaces to improve the 
readability of the code.

7.	 Programming Pitfalls Boxes
		  These boxes highlight common errors so that they can be avoided. An exam-

ple Programming Pitfalls Box is shown below:

Programming Pitfalls
Beware of integer arithmetic. Integer division often gives unexpected results.

8.	 Emphasis on Pointers and Dynamic Data Structures.
		  Chapter 15 contains a detailed discussion of Fortran pointers, including pos-

sible problems resulting from the incorrect use of pointers such as memory 
leaks and pointers to deallocated memory. Examples of dynamic data struc-
tures in the chapter include linked lists and binary trees.

		  Chapter 16 contains a discussion of Fortran objects and object-oriented pro-
gramming, including the use of dynamic pointers to achieve polymorphic behavior.

9.	 Use of Sidebars.
		  A number of sidebars are scattered throughout the book. These sidebars pro-

vide additional information of potential interest to the student. Some sidebars 
are historical in nature. For example, one sidebar in Chapter 1 describes the 
IBM Model 704, the first computer to ever run Fortran. Other sidebars 
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reinforce lessons from the main text. For example, Chapter 9 contains a side-
bar reviewing and summarizing the many different types of arrays found in 
modern Fortran.

10.  Completeness.
		  Finally, the book endeavors to be a complete reference to the modern Fortran 

language, so that a practitioner can locate any required information quickly. 
Special attention has been paid to the index to make features easy to find. A 
special effort has also been made to cover such obscure and little understood 
features as passing procedure names by reference, and defaulting values in 
list-directed input statements.

PEDAGOGICAL FEATURES

The book includes several features designed to aid student comprehension. Each 
chapter begins with a list of the objectives that should be achieved in that chapter. 
A total of 27 quizzes appear scattered throughout the chapters, with answers to all 
questions included in Appendix F. These quizzes can serve as a useful self-test of 
comprehension. In addition, there are approximately 360 end-of-chapter exercises. 
Answers to selected exercises are available at the book’s Web site, and of course an-
swers to all exercises are included in the Instructor’s Manual. Good programming 
practices are highlighted in all chapters with special Good Programming Practice 
boxes, and common errors are highlighted in Programming Pitfalls boxes. End-of-
chapter materials include Summaries of Good Programming Practice and Summaries 
of Fortran Statements and Structures. Finally, a detailed description of every Fortran 
intrinsic procedure is included in Appendix C, and an extensive Glossary is included 
in Appendix E.

The book is accompanied by an Instructor’s Manual, containing the solutions to 
all end-of-chapter exercises. Instructors can also download the solutions in the 
Instructor’s Manual from the book’s Web site. The source code for all examples in 
the book, plus other supplemental materials, can be downloaded by anyone from the 
book’s Web site.

A NOTE ABOUT FORTRAN COMPILERS

Two Fortran compilers were used during the preparation of this book: the Intel Visual 
Fortran Compiler Version 16.0 and the GNU G95 Fortran compiler. Both compilers 
provide essentially complete implementations of Fortran 2008, with only a very few 
minor items not yet implemented. They are also both looking to the future, implement-
ing features from the proposed Fortran 2015 standard.

I highly recommend both compilers to potential users. The great advantage of 
Intel Fortran is the very nice integrated debugging environment, and the great disad-
vantage is cost. The G95 compiler is free, but it is somewhat harder to debug.
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A FINAL NOTE TO THE USER

No matter how hard I try to proofread a document like this book, it is inevitable that 
some typographical errors will slip through and appear in print. If you should spot any 
such errors, please drop me a note via the publisher, and I will do my best to get them 
eliminated from subsequent printings and editions. Thank you very much for your help 
in this matter.

I will maintain a complete list of errata and corrections at the book’s World Wide Web 
site, which is www.mhhe.com/chapman4e. Please check that site for any updates and/or 
corrections.
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Introduction to Computers  
and the Fortran Language

OBJECTIVES

∙	 Know the basic components of a computer.
∙	 Understand binary, octal, and hexadecimal numbers. 
∙	 Learn about the history of the Fortran language. 

The computer was probably the most important invention of the twentieth century. 
It affects our lives profoundly in very many ways. When we go to the grocery store, 
the scanners that check out our groceries are run by computers. Our bank balances 
are maintained by computers, and the automatic teller machines and credit and debit 
cards that allow us to make banking transactions at any time of the day or night are 
run by more computers. Computers control our telephone and electric power sys-
tems, run our microwave ovens and other appliances, and control the engines in our 
cars. Almost any business in the developed world would collapse overnight if it were 
suddenly deprived of its computers. Considering their importance in our lives, it is 
almost impossible to believe that the first electronic computers were invented just 
about 75 years ago.

Just what is this device that has had such an impact on all of our lives? A computer 
is a special type of machine that stores information, and can perform mathematical 
calculations on that information at speeds much faster than human beings can think. A 
program, which is stored in the computer’s memory, tells the computer what sequence 
of calculations is required, and which information to perform the calculations on. Most 
computers are very flexible. For example, the computer on which I write these words 
can also balance my checkbook, if I just execute a different program on it.

Computers can store huge amounts of information, and with proper programming, 
they can make that information instantly available when it is needed. For example, a 
bank’s computer can hold the complete list of all the deposits and debits made by 
every one of its customers. On a larger scale, credit companies use their computers to 
hold the credit histories of every person in the United States—literally billions of 
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pieces of information. When requested, they can search through those billions of 
pieces of information to recover the credit records of any single person, and present 
those records to the user in a matter of seconds.

It is important to realize that computers do not think as humans understand 
thinking. They merely follow the steps contained in their programs. When a computer 
appears to be doing something clever, it is because a clever person has written the pro-
gram that it is executing. That is where we humans come into the act. It is our collec-
tive creativity that allows the computer to perform its seeming miracles. This book 
will help teach you how to write programs of your own, so that the computer will do 
what you want it to do.

1.1
THE COMPUTER

A block diagram of a typical computer is shown in Figure 1-1. The major components 
of the computer are the central processing unit (CPU), main memory, secondary 
memory, and input and output devices. These components are described in the para-
graphs below. 

FIGURE 1-1
A block diagram of a typical computer.
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1
1.1.1  The CPU

The central processing unit is the heart of any computer. It is divided into a control unit, 
an arithmetic logic unit (ALU), and internal memory. The control unit within the CPU 
controls all of the other parts of the computer, while the ALU performs the actual math-
ematical calculations. The internal memory within a CPU consists of a series of mem-
ory registers used for the temporary storage of intermediate results during calculations, 
plus a memory cache to temporarily store data that will be needed in the near future.

The control unit of the CPU interprets the instructions of the computer program. It 
also fetches data values from main memory (or the memory cache) and stores them in 
the memory registers, and sends data values from memory registers to output devices 
or main memory. For example, if a program says to multiply two numbers together and 
save the result, the control unit will fetch the two numbers from main memory and 
store them in registers. Then, it will present the numbers in the registers to the ALU 
along with directions to multiply them and store the results in another register. Finally, 
after the ALU multiplies the numbers, the control unit will take the result from the 
destination register and store it back into the memory cache. (Other parts of the CPU 
copy the data from the memory cache to main memory in slower time.)

Modern CPUs have become dramatically faster by incorporating multiple ALUs 
running in parallel, allowing more operations to be performed in a given amount of 
time. They also incorporate larger memory caches on the CPU chip, allowing data to 
be fetched and saved very rapidly.

1.1.2  Memory

The memory of a computer is divided into three major types of memory: cache mem-
ory, main or primary memory, and secondary memory. Cache memory is memory 
stored on the CPU chip itself. This memory can be accessed very rapidly, allowing 
calculations to proceed at very high speed. The control unit looks ahead in the program 
to see what data will be needed, and pre-fetches it from main memory into the memory 
cache so that it can be used with minimal delay. The control unit also copies the results 
of calculations from the cache back to main memory when they are no longer needed.

Main memory usually consists of separate semiconductor chips connected to the 
CPU by conductors called a memory bus. It is very fast, and relatively inexpensive com-
pared to the memory on the CPU itself. Data that is stored in main memory can be fetched 
for use in a few nanoseconds or less (sometimes much less) on a modern computer. Be-
cause it is so fast and cheap, main memory is used to temporarily store the program 
currently being executed by the computer, as well as the data that the program requires. 

Main memory is not used for the permanent storage of programs or data. Most 
main memory is volatile, meaning that it is erased whenever the computer’s power is 
turned off. Besides, main memory is relatively expensive, so we only buy enough to 
hold all of the programs actually being executed at any given time.

Secondary memory consists of devices that are slower and cheaper than main mem-
ory. They can store much more information for much less money than main memory can. 
In addition, most secondary memory devices are nonvolatile, meaning that they retain 
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the programs and data stored in them whenever the computer’s power is turned off. Typ-
ical secondary memory devices are hard disks, solid-state drives (SSD), USB memory 
sticks, and DVDs. Secondary storage devices are normally used to store programs and 
data that are not needed at the moment, but that may be needed some time in the future.

1.1.3  Input and Output Devices

Data is entered into a computer through an input device, and is output through an out-
put device. The most common input devices on a modern computer are the keyboard 
and the mouse. We can type programs or data into a computer with a keyboard. Other 
types of input devices found on some computers include touchscreens, scanners, 
microphones, and cameras. 

Output devices permit us to use the data stored in a computer. The most common 
output devices on today’s computers are displays and printers. Other types of output 
devices include plotters and speakers.

1.2
DATA REPRESENTATION IN A COMPUTER

Computer memories are composed of billions of individual switches, each of which can 
be ON or OFF, but not at a state in between. Each switch represents one binary digit (also 
called a bit); the ON state is interpreted as a binary 1, and the OFF state is interpreted as 
a binary 0. Taken by itself, a single switch can only represent the numbers 0 and 1. Since 
we obviously need to work with numbers other than 0 and 1, a number of bits are grouped 
together to represent each number used in a computer. When several bits are grouped 
together, they can be used to represent numbers in the binary (base 2) number system.

The smallest common grouping of bits is called a byte. A byte is a group of 8 bits 
that are used together to represent a binary number. The byte is the fundamental unit 
used to measure the capacity of a computer’s memory. For example, the personal com-
puter on which I am writing these words has a main memory of 24 gigabytes 
(24,000,000,000 bytes) and a secondary memory (disk drive) with a storage of 
2 terabytes (2,000,000,000,000 bytes).

The next larger grouping of bits in a computer is called a word. A word consists 
of 2, 4, or more consecutive bytes that are used to represent a single number in mem-
ory. The size of a word varies from computer to computer, so words are not a particu-
larly good way to judge the size of computer memories. Modern CPUs tend to use 
words with lengths of either 32 or 64 bits.

1.2.1  The Binary Number System

In the familiar base 10 number system, the smallest (rightmost) digit of a number is the 
ones place (100). The next digit is in the tens place (101), and the next one is in the 
hundreds place (102), etc. Thus, the number 12210 is really (1 × 102) + (2 × 101) + 
(2 × 100). Each digit is worth a power of 10 more than the digit to the right of it in the 
base 10 system (see Figure 1-2a).
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Similarly, in the binary number system, the smallest (rightmost) digit is the ones 
place (20). The next digit is in the twos place (21), and the next one is in the fours place 
(22), etc. Each digit is worth a power of 2 more than the digit to the right of it in the 
base 2 system. For example, the binary number 1012 is really (1 × 22) + (0 × 21) + 
(1 × 20) = 5, and the binary number 1112 = 7 (see Figure 1-2b). 

Note that three binary digits can be used to represent eight possible values: 0 (= 0002) 
to 7 (= 1112). In general, if n bits are grouped together to form a binary number, then they 
can represent 2n possible values. Thus, a group of 8 bits (1 byte) can represent 256 possi-
ble values, a group of 16 bits (2 bytes) can be used to represent 65,536 possible values, 
and a group of 32 bits (4 bytes) can be used to represent 4,294,967,296 possible values.

In a typical implementation, half of all possible values are reserved for represent-
ing negative numbers, and half of the values are reserved for representing zero plus the 
positive numbers. Thus, a group of 8 bits (1 byte) is usually used to represent numbers 
between −128 and +127, including 0, and a group of 16 bits (2 bytes) is usually used 
to represent numbers between −32,768 and +32,767, including 0.1

FIGURE 1-2
(a) The base 10 number 122 is really (1 × 102) + (2 × 101) + 
(2 × 100). (b) Similarly, the base 2 number 1012 is really 
(1 × 22) + (0 × 21) + (1 × 20).
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1 The most common scheme for representing negative numbers in a computer’s memory is the so-called 
two’s complement representation, which is described in the sidebar. 

TWO’S COMPLEMENT ARITHMETIC

The most common way to represent negative numbers in the binary number system is 
the two’s complement representation. What is two’s complement, and what is so spe-
cial about it? Let’s find out.

The Two’s Complement Representation of Negative Numbers
In the two’s complement representation, the leftmost bit of a number is the sign bit. 
If that bit is 0, then the number is positive; if it is 1, then the number is negative. To 
change a positive number into the corresponding negative number in the two’s comple-
ment system, we perform two steps:

	1.	 Complement the number (change all 1s to 0 and all 0s to 1).
	2.	 Add 1 to the complemented number.
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1 Let’s illustrate the process using simple 8-bit integers. As we already know, the 
8-bit binary representation of the number 3 would be 00000011. The two’s comple-
ment representation of the number −3 would be found as follows:

	1.	 Complement the positive number:	 11111100
	2.	 Add 1 to the complemented number:	 11111100 + 1 = 11111101

Exactly the same process is used to convert negative numbers back to positive num-
bers. To convert the number −3 (11111101) back to a positive 3, we would:

	1.	 Complement the negative number:	 00000010
	2.	 Add 1 to the complemented number:	 00000010 + 1 = 00000011

Two’s Complement Arithmetic
Now we know how to represent numbers in two’s complement representation, and to 
convert between positive and two’s complement negative numbers. The special 
advantage of two’s complement arithmetic is that positive and negative numbers may 
be added together according to the rules of ordinary addition without regard to the 
sign, and the resulting answer will be correct, including the proper sign. Because of 
this fact, a computer may add any two integers together without checking to see what 
the signs of the two integers are. This simplifies the design of computer circuits.

Let’s do a few examples to illustrate this point.

	1.	 Add 3 + 4 in two’s complement arithmetic.
3 00000011

+4 00000100
7 00000111

	2.	 Add (−3) + (−4) in two’s complement arithmetic.
3 11111101

+−4    11111100
−7 111111001

In a case like this, we ignore the extra ninth bit resulting from the sum, and the 
answer is 11111001. The two’s complement of 11111001 is 00000111 or 7, so the 
result of the addition was −7!

	3.	 Add 3 + (−4) in two’s complement arithmetic.

	
−3 00000011

+−4 11111100
−1 11111111

The answer is 11111111. The two’s complement of 11111111 is 00000001 or 1, so the 
result of the addition was −1.

With two’s complement numbers, binary addition comes up with the correct answer 
regardless of whether the numbers being added are both positive, both negative, or mixed.
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1.2.2  Octal and Hexadecimal Representations of Binary Numbers

Computers work in the binary number system, but people think in the decimal number 
system. Fortunately, we can program the computer to accept inputs and give its outputs 
in the decimal system, converting them internally to binary form for processing. Most 
of the time, the fact that computers work with binary numbers is irrelevant to the 
programmer.

However, there are some cases in which a scientist or engineer has to work directly 
with the binary representations coded into the computer. For example, individual bits 
or groups of bits within a word might contain status information about the operation of 
some machine. If so, the programmer will have to consider the individual bits of the 
word, and work in the binary number system.

A scientist or engineer who has to work in the binary number system immediately 
faces the problem that binary numbers are unwieldy. For example, a number like 
110010 in the decimal system is 0100010011002 in the binary system. It is easy to get 
lost working with such a number! To avoid this problem, we customarily break binary 
numbers down into groups of 3 or 4 bits, and represent those bits by a single base 
8 (octal) or base 16 (hexadecimal) number.

To understand this idea, note that a group of 3 bits can represent any number 
between 0 (= 0002) and 7 (= 1112). These are the numbers found in an octal or base 8 
arithmetic system. An octal number system has seven digits: 0 through 7. We can 
break a binary number up into groups of 3 bits, and substitute the appropriate octal 
digit for each group. Let’s use the number 0100010011002 as an example. Breaking 
the number into groups of three digits yields 010∣001∣001∣1002. If each group of 3 bits 
is replaced by the appropriate octal number, the value can be written as 21148. The 
octal number represents exactly the same pattern of bits as the binary number, but it is 
more compact.

Similarly, a group of 4 bits can represent any number between 0 (= 00002) and 
15 (= 11112). These are the numbers found in a hexadecimal or base 16 arithmetic 
system. A hexadecimal number system has 16 digits: 0 through 9 and A through F. 
Since the hexadecimal system needs 16 digits, we use digits 0 through 9 for the first 
10 of them, and then letters A through F for the remaining 6. Thus, 916 = 910, A16 = 
1010, B16 = 1110, and so forth. We can break a binary number up into groups of 4 
bits, and substitute the appropriate hexadecimal digit for each group. Let’s use the 
number 0100010011002 again as an example. Breaking the number into groups of 
four digits yields 0100∣0100∣11002. If each group of 4 bits is replaced by the appro-
priate hexadecimal number, the value can be written as 44C16. The hexadecimal 
number represents exactly the same pattern of bits as the binary number, but more 
compactly. 

Some computer vendors prefer to use octal numbers to represent bit patterns, 
while other computer vendors prefer to use hexadecimal numbers to represent bit pat-
terns. Both representations are equivalent, in that they represent the pattern of bits in a 
compact form. A Fortran language program can input or output numbers in any of the 
four formats (decimal, binary, octal, or hexadecimal). Table 1-1 lists the decimal, 
binary, octal, and hexadecimal forms of the numbers 0 to 15.



8	 chapter 1:    Introduction to Computers and the Fortran Language

1

1.2.3  Types of Data Stored in Memory

Three common types of data are stored in a computer’s memory: character data, 
integer data, and real data (numbers with a decimal point). Each type of data has 
different characteristics, and takes up a different amount of memory in the 
computer.

Character Data
The character data type consists of characters and symbols. A typical system for 

representing character data in a non-Oriental language must include the following symbols:

	 1.	 The 26 uppercase letters A through Z
	 2.	 The 26 lowercase letters a through z
	 3.	 The 10 digits 0 through 9
	 4.	 Miscellaneous common symbols, such as ",(), {}, [], !, ~, @, #, $, 

%, ^, &, and *.
	 5.	 Any special letters or symbols required by the language, such as à, ç, ë, and £.

Since the total number of characters and symbols required to write Western 
languages is less than 256, it is customary to use 1 byte of memory to store each 
character. Therefore, 10,000 characters would occupy 10,000 bytes of the comput-
er’s memory.

The particular bit values corresponding to each letter or symbol may vary from 
computer to computer, depending upon the coding system used for the characters. The 
most important coding system is ASCII, which stands for the American Standard Code 

TABLE 1-1
Table of decimal, binary, octal, and  
hexadecimal numbers

Decimal Binary Octal Hexadecimal

0 0000 0 0
1 0001 1 1
2 0010 2 2
3 0011 3 3
4 0100 4 4
5 0101 5 5
6 0110 6 6
7 0111 7 7
8 1000 10 8
9 1001 11 9

10 1010 12 A
11 1011 13 B
12 1100 14 C
13 1101 15 D
14 1110 16 E
15 1111 17 F
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for Information Interchange (ANSI X3.4 1986, or ISO/IEC 646:1991). The ASCII 
coding system defines the values to associate with the first 128 of the 256 possible 
values that can be stored in a 1-byte character. The 8-bit codes corresponding to each 
letter and number in the ASCII coding system are given in Appendix A. 

The second 128 characters that can be stored in a 1-byte character are not defined 
by the ASCII character set, and they used to be defined differently depending on the 
language used in a particular country or region. These definitions are a part of the ISO 
8859 standard series, and they are sometimes referred to as “code pages.” For exam-
ple, the ISO 8859-1 (Latin 1) character set is the version used in Western European 
countries. There are similar code pages available for Eastern European languages, 
Arabic, Greek, Hebrew, and so forth. Unfortunately, the use of different code pages 
made the output of programs and the contents of files appear different in different 
countries. As a result, these code pages are falling out of favor, and being replaced by 
the Unicode system described below. 

Some Oriental languages such as Chinese and Japanese contain more than 256 
characters (in fact, about 4000 characters are needed to represent each of these 
languages). To accommodate these languages and all of the other languages in the 
world, a coding system called Unicode2 has been developed. In the Unicode cod-
ing system, each character is stored in 2 bytes of memory, so the Unicode system 
supports 65,536 possible different characters. The first 128 Unicode characters are 
identical to the ASCII character set, and other blocks of characters are devoted to 
various languages such as Chinese, Japanese, Hebrew, Arabic, and Hindi. When 
the Unicode coding system is used, character data can be represented in any 
language.

Integer Data
The integer data type consists of the positive integers, the negative integers, and 

zero. The amount of memory devoted to storing an integer will vary from computer to 
computer, but will usually be 1, 2, 4, or 8 bytes. Four-byte integers are the most com-
mon type in modern computers.

Since a finite number of bits are used to store each value, only integers that fall 
within a certain range can be represented on a computer. Usually, the smallest number 
that can be stored in an n-bit integer is

	 Smallest integer value = −2n−1	 (1-1) 

and the largest number that can be stored in an n-bit integer is

	 Largest integer value = 2n−1 − 1	 (1-2) 

For a 4-byte integer, the smallest and largest possible values are −2,147,483,648 and 
2,147,483,647, respectively. Attempts to use an integer larger than the largest possible 

2 Also referred to by the corresponding standard number, ISO/IEC 10646:2014.




